Here it is:
Let M be a point inside a circle C. The point M has a distance of a from the center of the circle C.
Let R be the radius of the circle. Then R > a.
Let any cord |AB| in the circle pass through M.
Prove that |MA|*|MB| = R^2 - a^2
--------------------------------------------
I now provide a proof using the Law of Cosines.
Let point O be the center of circle C.
Let angle OMA = θ
Then:
R^2 = a^2 + (|MA|^2) - 2a cos(θ)
R^2 = a^2 + (|MB|^2) - 2a cos(180 - θ)
------------------------
same as:
R^2 = a^2 + (|MA|^2) - 2a cos(θ)
R^2 = a^2 + (|MB|^2) + 2a cos(θ)
------------------------
then
R^2 - a^2 = (|MA|^2) - 2a cos(θ) = (|MB|^2) + 2a cos(θ)
hence:
(|MA| - |MB|)*(|MA| + |MB|) = 2a cos(θ)*(|MA| + |MB|)
simplifying some terms we get:
(|MA| - |MB|) = 2a cos(θ)
and then
|MA| = |MB| + 2a cos(θ)
multiply both sides by |MA| and:
|MA|^2 = |MA|*|MB| + 2a |MA| cos(θ)
So:
|MA|*|MB| = |MA|^2 - 2a |MA| cos(θ)
therefore:
|MA|*|MB| = R^2 - a^2
QED time!!!
No comments:
Post a Comment